Carl Friedrich Gauss

Carl Friedrich Gauss nació en Braunschweig el 30 de abril de 1777 y estudió lenguas antiguas, pero a los 17 años comenzó a interesarse por las matemáticas e intentó dar una solución al problema clásico de la construcción de un heptágono regular, o figura de siete lados, con una regla y un compás. No solamente consiguió probar que esto era imposible, sino que siguió aportando métodos para construir figuras de 17, 257 y 65.537 lados. Durante estos estudios, probó que la construcción, con regla y compás, de un polígono regular con un número de lados impar sólo era posible cuando el número de lados era un número primo de la serie 3, 5, 17, 257 y 65.537 o un producto de dos o más de estos números. A raíz de este descubrimiento abandonó sus estudios de lenguas y se dedicó a las matemáticas. Estudió en la Universidad de Gotinga desde 1795 hasta 1798; para su tesis doctoral presentó una prueba de que cada ecuación algebraica tiene al menos una raíz o solución…

 Carl Friedrich Gauss

Este teorema, que ha sido un desafío para los matemáticos durante siglos, se sigue denominando teorema fundamental de álgebra. Su tratado sobre la teoría de números, Disquisitiones arithmeticae en el año 1801, es una obra clásica en el campo de las matemáticas. Más tarde, Gauss dirigió su atención hacia la astronomía. El asteroide Ceres había sido descubierto en 1801, y puesto que los astrónomos pensaban que era un planeta, lo observaron con mucho interés hasta que lo perdieron de vista. Desde sus primeras observaciones, Gauss calculó su posición exacta, de forma que fue fácil su redescubrimiento. También planeó un nuevo método para calcular las órbitas de los cuerpos celestes.

Imagen relacionada

Carl Friedrich Gauss

En 1807 fue nombrado profesor de matemáticas y director del observatorio de Gotinga, ocupando los dos cargos hasta el 23 de febrero de 1855, fecha de su muerte.  Aunque Gauss hizo valiosas contribuciones tanto a la astronomía teórica como práctica, trabajó sobre todo en matemáticas y en física matemática, abarcando prácticamente todas sus ramas. En la teoría de números desarrolló el importante teorema de los números primos. Gauss fue el primero en desarrollar una geometría no euclídea, pero no publicó estos importantes descubrimientos ya que deseaba evitar todo tipo de publicidad. En la teoría de la probabilidad, desarrolló el importante método de los mínimos cuadrados y las leyes fundamentales de la distribución de la probabilidad. El diagrama normal de la probabilidad se sigue llamando curva de Gauss. Realizó estudios geodésicos y aplicó las matemáticas a la geodesia.

File:Carl Friedrich Gauß signature.svg

Firma de Carl Friedrich Gauss

Junto con el físico alemán Wilhelm Eduard Weber, Gauss realizó una intensa investigación sobre el magnetismo. Entre sus más importantes trabajos están los de la aplicación de las matemáticas al magnetismo y a la electricidad; una unidad de inducción magnética recibe su nombre. También llevó a cabo investigaciones en el campo de la óptica, especialmente en los sistemas de lentes…[1]

La Factoria Historica

________________

[1] La ley de Gauss puede ser utilizada para demostrar que no existe campo eléctrico dentro de una jaula de Faraday. La ley de Gauss es la equivalente electrostática a la ley de Ampère, que es una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas en las ecuaciones de Maxwell. Esta ley puede interpretarse, en electrostática, entendiendo el flujo como una medida del número de líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual este número es constante si la carga está contenida por la superficie y es nulo si está fuera (ya que hay el mismo número de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de la carga, resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si no lo está. Cuando tenemos una distribución de cargas, por el principio de superposición, sólo tendremos que considerar las cargas interiores, resultando la ley de Gauss. Sin embargo, aunque esta ley se deduce de la ley de Coulomb, es más general que ella, ya que se trata de una ley universal, válida en situaciones no electrostáticas en las que la ley de Coulomb no es aplicable.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s