Electrón

El electrón comúnmente representado por el símbolo: e, es una partícula subatómica de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones, formando orbitales atómicos dispuestos en sucesivas capas. Los electrones tienen una masa de 9,11×10-31 kilogramos, unas 1840 veces menor que la de los neutrones y protones. Siendo tan livianos, apenas contribuyen a la masa total de las sustancias. Su movimiento genera la corriente eléctrica, aunque dependiendo del tipo de estructura molecular en la que se encuentren, necesitarán más o menos energía para desplazarse. Estas partículas desempeñan un papel primordial en la química, ya que definen las atracciones entre los átomos…

Electrón

Desde el punto de vista físico, el electrón tiene una carga eléctrica de igual magnitud, pero de polaridad contraria a la del protón. Dicha cantidad, cuyo valor es de 1,602×10-19 coulombios, es llamada carga elemental o fundamental, y es considera a veces un cuanto de carga eléctrica, asignándosele un valor unitario. Por razones históricas y ventajas en ecuaciones matemáticas, se considera a la carga del protón como positiva, mientras que a la del electrón como negativa. Por esto se dice que los protones y electrones tienen cargas de +1 y -1 respectivamente, aunque esta elección de signo es totalmente arbitraria.

File:O2 MolecularOrbitals Anim.gif

Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental.

La existencia del electrón fue postulada por el físico irlandés G. Johnstone Stoney como una unidad de carga en el campo de la electroquímica, y fue descubierto por Joseph John Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge. Influido por el trabajo de Maxwell y el descubrimiento de los rayos X, Thomson dedujo, mientras estudiaba el comportamiento de los rayos catódicos en el TRC, que existían unas partículas con carga negativa que denominó corpúsculos. Aunque Stoney había propuesto la existencia del electrón, fue Thomson quien descubrió su carácter de partícula fundamental; sin embargo, para confirmar su existencia era necesario medir sus propiedades, en particular la carga eléctrica. Este objetivo fue alcanzado por Robert Millikan en el célebre experimento de la gota de aceite realizado en 1909. George Paget Thomson, hijo de J. J. Thomson, demostró la naturaleza ondulatoria de los electrones logrando observar su difracción al atravesar una lámina de metal. El experimento condujo a la aparición de un patrón de interferencia como el que se obtiene en la difracción de otras ondas, como la luz, probando la dualidad onda corpúsculo postulada por la mecánica cuántica en 1926 por De Broglie. Este descubrimiento le valió a G. P. Thomson el Premio Nobel de Física de 1937.

File:Lightning over Oradea Romania cropped.jpg

La descarga de un rayo consiste principalmente en un flujo fractal de electrones

El espín del electrón se observó por vez primera en el experimento de Stern y Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro y la corriente generada por su movimiento, con un galvanómetro. Seis años antes de los descubrimientos de Thomson, Stoney había propuesto la existencia de estas partículas y, asumiendo que tenían cargas eléctricas, las denominó electrones. Posteriormente, otros científicos demostraron experimentalmente que el electrón tiene una masa 2000 veces menor que el átomo de hidrógeno[1]

Enlace directo: Historia de la física

La Factoria Historica

_________________

[1] En la teoría relativista el electrón se consideró una partícula cuasipuntual, ya que la consideración de que fuera puntual conducía a diversas singularidades. La teoría del Radio clásico del electrón trataba de explicar la masa del electrón como un efecto inercial de la energía contenida en el campo gravitatorio del electrón. Dicho radio es una cantidad finita de difícil interpretación, si el electrón no es puntual entonces cuando es acelerado en un campo electromagnético unas partes del electrón debían ser aceleradas en mayor proporción que otras, o empezar a moverse antes, lo cual sugería que la forma del electrón debía cambiar, pero entonces la idea de interpretar la masa como asociada al campo no funcionaba bien. Esa y otras inconsistencias como el efecto de influencia causal del futuro en la expresión de la fuerza revelaron que los modelos no-cuánticos del electrón eran inadecuados. En la mecánica cuántica, un electrón en un campo electromagnético es descrito por la ecuación de Dirac, mientras que el comportamiento colectivo de los electrones viene descrito por la estadística de Fermi-Dirac. En el modelo estándar de la física de partículas forma un doblete con el neutrino, dado que ambos interaccionan de forma débil. En la naturaleza existen además otros dos “electrones masivos”, el muon y el tauón, con propiedades similares al mismo, aunque son partículas diferentes que tienen una corta existencia y se desintegran muy rápidamente. El equivalente al electrón en la antimateria, es decir su antipartícula, es el positrón, que tiene la misma cantidad de carga eléctrica que el electrón pero positiva. El espín y la masa son iguales en el electrón y el positrón. Cuando un electrón y un positrón colisionan, tiene lugar la aniquilación mutua, originándose dos fotones de rayos gamma con una energía de 0,500 MeV cada uno. Los electrones son un elemento clave en el electromagnetismo, una teoría que es adecuada desde un punto de vista clásico, aplicable a sistemas macroscópicos.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s